LETTERS 1999 Vol. 1, No. 7 1039–1041

ORGANIC

Solvent-Dependent Photochemical Rearrangements of Ethers of Styrylheterocycles

Jin-Yi Wu, Jinn-Hsuan Ho, Shen-Min Shih, Tse-Lin Hsieh, and Tong-Ing Ho*

Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China

hall@chem50.ch.ntu.edu.tw

Received July 19, 1999

ABSTRACT

Direct photolysis of p-RO(R = alkyl or aryl)-2-styrylfurans (1a–f), 2-styrylthiophenes (2a–f), and 2-styryl-*N*-methylpyrrole (3) in hydrated dichloromethane gives 5-(3-oxo-1-butenyl)benzo[*b*]furan (4), -thiophene (5), and *N*-methylpyrrole (6), respectively, in good isolated yields. However, photolysis of 1a,b,e and 2a,b,e in dehydrated benzene gives 5-(3-RO-1,3-butadienyl)benzo[*b*]furans (7a,b,e) and -thiophenes (8a,b,e) in good yields. Photolysis of 7 and 8 in hydrated dichloromethane produces 4 and 5, respectively.

Rearrangement is one of the most important topics in photochemical reactions. It is especially important for reactions involving a complicated skeletal change that can provide abundant information for mechanistic considerations.¹ Solvent-dependent photochemical reactions have recently become a topic of interest.^{2–4}

Stilbene and its derivatives are photochemically active.^{5,6} Under oxidative conditions, phenanthrene can be a major

(5) (a) Kaupp, G. Angew. Chem. 1980, 92, 245–277; Angew. Chem., Int. Ed. Engl. 1980, 19, 243–275. (b) Saltiel, J.; Charlton, J. L. In Rearrangements in Ground and Excited States, Vol. 3; de Mayo, P., Ed.; Academic Press: New York, 1980; pp 25–89. (c) Waldeck, D. H. Chem. Rev. 1991, 91, 415–436. (d) Hammond, G. S.; Turro, N. J. Science 1963, 142, 1541–1553. (e) Lewis, F. D.; Bedell, A. M.; Dykstra, R. E.; Elbert, J. E.; Gould, I. R.; Farid, S. J. Am. Chem. Soc. 1970, 92, 1439–1441. (g) Gusten, H.; Schulte-Frohlinde, D. Chem. Ber. 1971, 104, 402–406.

(6) Lewis, F. D. Acc. Chem. Res. 1979, 12, 152-158.

10.1021/ol990828u CCC: \$18.00 © 1999 American Chemical Society Published on Web 09/09/1999

product through isomerization and oxidative photocyclization (eq 1).⁷

Styrylthiophene⁸ and styrylfuran⁹ can also be transformed photochemically into the corresponding heterocycles through oxidative cyclization (eq 2). Using the Wittig reaction,¹⁰ we

have prepared p-RO(R = alkyl or aryl)-2-styrylfurans (1a-f),¹¹ 2-styrylthiophenes (2a-f),¹² and 2-styryl-*N*-methyl-pyrrole (3)¹³ (Scheme 1) and report here novel solvent-

⁽¹⁾ Zimmerman, H. E. In *Rearrangements in Ground and Excited States*, *Vol. 3*; de Mayo, P., Ed.; Academic Press: New York, 1980; pp 131–166.

 ^{(2) (}a) Saito, M.; Kamei, Y.; Kuribara, K.; Yoshioka, M. J. Org. Chem.
 1998, 63, 9013–9018. (b) Lewis, F. D.; Cohen, B. E. J. Phys. Chem. 1994, 98, 10591–10597.

⁽³⁾ Nakayama, T.; Hamana, T.; Miki, S.; Hamanoue, K. J. Chem. Soc., Faraday Trans. **1996**, 92, 1473-1479.

^{(4) (}a) Inoue, H.; Sakurai, T.; Hoshi, T.; Ono, I.; Okubo, J. J. Phys. Org. Chem. **1992**, 5, 355–360. (b) Schultz, A. G. Acc. Chem. Res. **1983**, 16, 210–218.

dependent photochemical rearrangements for this series of styrylheterocycles.

Irradiation of a 1×10^{-2} M undehydrated solution (CH₂-Cl₂) of *p*-methoxystyrylfuran (**1a**) with a Rayonet reactor (350 nm) for 3 h gave 5-(3-oxo-1-butenyl)benzo[*b*]furan (**4**)¹⁴ as the sole isolated product in 94% yield. The infrared spectrum indicated strong absorption at 1662 and 1635 cm⁻¹ for the conjugated carbonyl functional group (¹H NMR (CDCl₃) δ 7.59 (d, J = 16.1 Hz, 1H), 6.69 (d, J = 16.1 Hz, 1H), 2.36 (s, 3H); ¹³C NMR δ 198.1) are consistent with this structure. The products consist of two isomers. The major *E* isomer can be isolated in large quantity. Similarly, irradiation of other ether derivatives (**1b**-**f**) in dichloromethane solution gave the corresponding benzo[*b*]furan (**4**) in high yields, and again the major products were the *E*

(8) (a) Carruthers, W.; Stewart, H. N. W. *J. Chem. Soc.* **1965**, 6221–6227. (b) Carruthers, W.; Stewart, H. N. W. *Tetrahedron Lett.* **1965**, 301–302.

(9) Loader, C. E.; Timmons, C. J. J. Chem. Soc. C 1967, 1677–1681. (10) Wadsworth, W. S., Jr. In Synthetic applications of phosphorylstabilised anions, in Organic Reactions (25); Dauben, W.G.; Wiley: New York, 1977; p 73.

(11) Spectral data for compound **1a**: mp 73.5–74 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.36–7.41 (m, 3H), 6.99 (d, J = 16.3 Hz, 1H), 6.86 (d, J = 8.8 Hz, 2H), 6.75 (d, J = 16.3 Hz, 1H), 6.39 (dd, J = 1.9, 3.3 Hz, 1H), 6.28 (d, J = 3.3 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) 159.3, 153.5, 141.7, 129.8, 127.5, 126.8, 114.6, 114.1, 111.5, 107.6, 55.3; MS (70 eV, EI) 186 (M⁺, 69), 185 (42), 171 (100), 143 (43), 115 (45).

(12) **2a**: mp 134–135 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.40 (d, J = 8.8 Hz, 2H), 7.15 (d, J = 5.4 Hz, 1H), 7.10 (d, J = 16.1 Hz, 1H), 6.96–7.06 (m, 2H), 6.90 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 16.1 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 159.2, 143.2, 129.7, 128.0, 127.5, 127.4, 125.3, 123.7, 119.7, 114.1, 55.2; MS (70 eV, EI) 216 (M⁺, 100), 201 (36), 171 (22), 129 (32), 115 (42).

(13) **3a**: ¹H NMR (200 MHz, CDCl₃) δ 7.38 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.82 (s, 2H), 6.61 (dd, J = 1.9, 4.3 Hz, 1H), 6.43 (dd, J = 1.7, 3.7 Hz, 1H), 6.13 (dd, J = 2.7, 3.7 Hz, 1H), 3.81 (s, 3H), 3.67 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 130.1, 127.1, 126.9, 125.8, 123.1, 115.2, 114.1, 113.4, 108.1, 106.0, 55.3, 34.1; MS (70 eV, EI) 213 (M⁺, 9), 185 (38), 126 (100), 95 (48), 83 (72).

(14) 4-Oxainden-5-yl-but-3-en-2-one (4): mp 74–75 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.76 (s, 1H), 7.65 (d, J = 2.2 Hz, 1H), 7.62 (d, J = 16.1 Hz, 1H), 7.50 (d, J = 0.8 Hz, 2H), 6.78 (d, J = 2.2 Hz, 1H), 6.72 (d, J = 16.1 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 198.1, 156.1, 146.0, 143.8, 129.4, 128.0, 126.0, 124.3, 121.8, 111.9, 106.7, 27.4; MS (70 eV, EI) 186 (M⁺, 87), 171 (100), 143 (44), 115 (64); HR-MS calcd for C₁₂H₁₀O₂ 186.0681, found 186.0683.

Table 1. Chemical Yields for the Photochemical Reactions of 1a-f, 2a-f, and 3 at 350 nm in Undehydrated Dichloromethane Solvent

reactions	irrad times (h)	products	conversions (%)	yields (%)	<i>E/Z</i> ratio
1a	3	4	97	94	93/7
1b	3	4	97	96	100/0
1c	3	4	95	95	94/6
1d	3	4	80	93	100/0
1e	3	4	75	89	100/0
1f	4	4	97	90	93/7
2a	10	5	98	88	93/7
2b	10	5	91	90	88/12
2c	10	5	89	93	94/6
2d	10	5	98	98	97/3
2e	10	5	93	90	87/13
2f	10	5	97	96	96/4
3	20	6	51	75	100/0

isomers (Table 1). Irradiation of the starting material (1a - f) in dehydrated dichloromethane resulted in decreased yields of **4**.

This novel photochemical rearrangement can also be applied to styrylthiophenes $(2\mathbf{a}-\mathbf{f})^{15}$ and styryl-*N*-methylpyrrole (3)¹⁶ (Scheme 1). The yields are also good for the styrylthiophenes; however, more time is needed for photolysis (10 and 20 h for styrylthiophenes and styrylpyrrole, respectively).

In dehydrated benzene (or toluene), however, upon irradiation of a 1×10^{-2} M *p*-ethoxystyrylthiophene (**2b**), the isolated compound shows ¹H NMR peaks at δ 7.39 (d, J = 15.8 Hz, 1H), 6.62 (d, J = 15.8 Hz, 1H), 4.28 (d, J = 1.3 Hz, 1H), and 4.18 (d, J = 1.3 Hz, 1H). On the basis of these results, the isolated product is considered to be 5-(3-ethoxy-1,3-butadienyl)benzo[*b*]thiophene (**8b**) (Scheme 2). Similarly,

upon irradiation of **1a,b,e,f** and **2a,e** in dehydrated benzene, the photochemical products are the corresponding *Z*- and *E*-dienol ethers.¹⁷ The yields are also good, and a mixture of *E*- and *Z*-isomers is usually obtained. It is difficult to

^{(7) (}a) Mallory, F. B.; Mallory C. W. Org. React. 1980, 30, 1. (b) Sargent,
M. V.; Timmons, C. J. J. Chem. Soc. 1964, 5544-5552. (c) Mallory, F.
B.; Wood, C. S.; Gordon, J. T. J. Am. Chem. Soc. 1964, 86, 3094-3102.
(d) Moore, W. M.; Morgan, D. D.; Stérmitz, F. R. J. Am. Chem. Soc. 1963, 85, 5, 829-830. (e) Mallory, F. B.; Gordon, J. T.; Wood, C. S. J. Am. Chem. Soc. 1963, 85, 828-829.

Table 2. Chemical Yields for Photochemical Reactions of**1a,b,e** and **2a,b,e** at 350 nm in Dehydrated Benzene

reactions	irrad times (h)	products	conversions (%)	yields (%)	<i>E/Z</i> ratio
1a	16	7a	90	87	54/46
1b	20	7b	68	82	80/20
1e	20	7e	58	74	68/32
2a	36	8a	68	72	68/32
2b	36	8 b	78	77	92/8
2e	48	8e	58	64	61/39

isolate the pure isomers. In some cases, we did isolate the pure Z-form (Table 2). Further irradiation of the isolated pure Z-isomer or a Z, E-mixture of 7 or 8 in hydrated dichloromethane leads to the isolation of 4 or 5, respectively. Thus, it is clear that the dienol ether compounds (7, 8) are precursors of the 3-oxo-1-butenyl compounds (4, 5). The decreased yields for 4 and 5 when 7 and 8 are photolyzed in hydrated benzene solution indicates that photochemical hydration is less efficient in hydrated benzene. No dienol ethers (7, 8) are obtained upon photolysis of a dehydrated

(16) 4-(1-Methylindol-5-yl)but-3-en-2-one (6): ¹H NMR (300 MHz, CDCl₃) δ 7.78 (s, 1H), 7.65 (d, J = 16.2 Hz, 1H), 7.45 (d, J = 8.7 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.05 (d, J = 3.0 Hz, 1H), 6.70 (d, J = 16.2 Hz, 1H), 6.70 (d, J = 16.2 Hz, 1H), 6.70 (d, J = 16.2 Hz, 1H), 6.77 (d, J = 3.0 Hz, 1H), 3.77 (s, 3H), 2.37 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 198.5, 145.6, 137.9, 130.0, 128.7, 125.8, 124.4, 122.8, 121.1, 109.8, 102.0, 32.9, 27.4; MS (70 eV, EI) 199 (M⁺, 86), 184 (100), 156 (26), 141 (19); HR-MS calcd for C₁₃H₁₃ON 199.0997, found 199.1004.

(17) 3-Methoxy-1-oxaiden-5-yl-1,3-butadiene (Z-7a): ¹H NMR (300 MHz, C₆D₆) δ 7.55 (s, 1H), 7.25 (d, J = 8.6 Hz, 1H), 7.17 (dd, J = 1.3, 8.6 Hz, 1H), 7.11 (d, J = 2.1 Hz, 1H), 6.45 (d, J = 12.5 Hz, 1H), 6.28 (d, J = 2.1 Hz, 1H), 6.00 (d, J = 12.5 Hz, 1H), 4.24 (d, J = 2.0 Hz, 2H), 3.10 (s, 3H). *E*-7a: ¹H NMR (300 MHz, C_6D_6) δ 7.41 (s, 1H), 7.34 (d, J =15.9 Hz, 1H), 7.30 (s, 2H), 7.10 (d, J = 2.1 Hz, 1H), 6.56 (d, J = 15.9 Hz, 1H), 6.32 (d, J = 2.1 Hz, 1H), 4.14 (d, J = 1.7 Hz, 1H), 4.05 (d, J = 1.7Hz, 1H), 3.34 (s, 3H). 3-Ethoxy-1-oxaiden-5-yl-1,3-butadiene (Z-7b): ¹H NMR (300 MHz, C₆D₆) δ 7.58 (s, 1H), 7.30 (s, 2H), 7.11 (d, J = 2.2 Hz, 1H), 6.46 (d, J = 12.5 Hz, 1H), 6.32 (d, J = 2.2 Hz, 1H), 6.00 (d, J = 12.5Hz, 1H), 4.25 (d, J = 1.4 Hz, 1H), 4.08 (d, J = 1.2 Hz, 1H), 3.37 (q, J = 7.1 Hz, 2H), 0.83 (t, J = 7.1 Hz, 3H). 3-Ethoxy-1-benzo[b]thiophen-5-yl-1,3-butadiene (Z-8b): ¹H NMR (200 MHz, C₆D₆) δ 7.54 (d, J = 1.1 Hz, 1H), 7.45 (d, J = 8.5 Hz, 1H), 7.37 (d, J = 15.8 Hz, 1H), 7.22 (dd, J = 15.8 1.5, 8.5 Hz, 1H), 6.90 (s, 2H), 6.62 (d, J = 15.8 Hz, 1H), 4.28 (d, J = 1.3Hz, 1H), 4.18 (d, J = 1.3 Hz, 1H), 3.59 (q, J = 6.9 Hz, 2H), 1.17 (t, J = 6.9 Hz, 3H); ¹³C NMR (50 MHz, C₆D₆) δ 159.1, 140.5, 133.7, 130.5, 129.3, 128.3, 126.8, 125.2, 124.2, 123.1, 122.7, 87.4, 62.9, 14.5; MS (70 eV, EI) 230 (M⁺, 100), 209 (93), 201 (74), 194 (64), 185 (57), 173 (38); HR-MS calcd for C14H14OS 230.0766, found 230.0764.

dichloromethane solution containing the starting material (1, 2).

The mechanism for this novel photochemical rearrangement involves a photochemical conrotatory cyclization, a novel 1,9-hydrogen shift, lateral ring opening,¹⁸ and finally photochemical conversion of the dienol ether to the conjugated ketone (Scheme 3).

In conclusion, a novel solvent-dependent photochemical rearrangement reaction is reported for the alkoxy or aryloxy ethers of styrylfuran, styrylthiophene, and styrylpyrrole. The reaction yields are high, and the product is clean. These constitute novel synthetic routes for the transformation of styrylheterocycles to benzo[b]heterocycles with a substituent that contains a dienyl ether or conjugated ketone functionality, which can be controlled by choosing a suitable solvent. The reaction mechanism of this novel rearrangement includes photochemical cyclization, 1,9-hydrogen shift, ring opening, and photochemical transformation of dienol ether to conjugated ketone. The final step is very sensitive to the solvent and can occur efficiently in hydrated dichloromethane medium; if the solvent is less-polar dehydrated benzene, the hydration reaction dose not occur.

Acknowledgment. This work was supported by a research grant from the National Science Council, ROC (Taiwan).

OL990828U

^{(15) 4-}Benzo[*b*]thiophen-5-ylbut-3-en-2-one (**5**): mp 101–102 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.94 (d, *J* = 1.6 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 16.2 Hz, 1H), 7.52 (dd, *J* = 1.6, 8.4 Hz, 1H), 7.47 (d, *J* = 5.5 Hz, 1H), 7.34 (dd, *J* = 0.6, 5.5 Hz, 1H), 6.77 (d, *J* = 16.2 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 198.1, 143.6, 141.7, 139.9, 130.7, 127.6, 126.6, 124.3, 124.0, 123.1, 122.9, 27.5; MS (70 eV, EI) 202 (M⁺, 100), 187 (88), 159 (27), 115 (51); HR-MS calcd for C₁₂H₁₀OS 202.0452, found 202.0451.

⁽¹⁸⁾ We have studied a similar reaction mechanism for the *p*-alkylstyrylfurans. Ho, T.-I.; Wu, J.-Y.; Wang, S.-L. *Angew. Chem., Int. Ed.* **1999**, submitted.